Modeling the binding of peptides on carbon nanotubes and their use as protein and DNA carriers

نویسندگان

  • Vanesa Sanz
  • Helen M. Coley
  • P. Silva
  • Johnjoe McFadden
چکیده

An in deep study of the functionalization of carbon nanotubes for their application as peptides and DNA carriers is presented. Designed amphiphilic polypeptides are used to study the dispersion properties of single-walled carbon nanotubes (SWCNTs) and to measure the properties of the carbon nanotube-polypeptide complexes. These properties allow the design of methods for using carbon nanotubes as platforms for protein and DNA binding. First, a model that characterizes the adsorption of natural peptides onto SWCNTs is developed which allows the design of functionalization methods of SWCNTs with proteins. This model was based on properties that describe the protein structure and composition. Second, the binding of cationic amphiphilic polypeptides to SWCNTs is studied for subsequent and efficient binding of DNA to carbon nanotubes by a bilayer approach. These functionalization methods for the development of protein and DNA carriers have potential applications in using SWCNTs in important fields such as biosensing and delivery systems design.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density Functional Theory Calculations of Functionalized Carbon Nanotubes with Metformin as Vehicles for Drug Delivery

Drug delivery by nanomaterials is an active emergent research area and CNTs draws considerable potential application owing to its unique quasi one-dimensional structure and electronic properties. Single walled carbon nanotubes and carbon fullerenes can be used in drug delivery due to their mechanical and chemical stability. The past few years, increasing attention by several reputed groups has ...

متن کامل

Preparation and biochemical characterisation of nanoconjugates of functionalized carbon nanotubes and cytochrome c

Objective(s): The present work deals with the preparation of nanobioconjugates based on the immobilization of cytochrome c (cyt c) on functionalized multi-wall carbon nanotubes (f-MWCNTs). The effect of the nanosupport and the immobilization procedure on the biochemical and structural characteristics of the immobilized protein was investigated. Methods: </strong...

متن کامل

Computational Investigation on Structural Properties of Carbon Nanotube Binding to Nucleotides According to the QM Methods

The interaction between nucleotides and carbon nanotubes (CNTs) is a subjectof many investigations for treating diseases but there are many questions in this field thatremain unanswered. Because of experimental methods involve assumptions andinterpretation besides limitations, there are many problems that the best study for them isusing theoretical study. Consequently, t...

متن کامل

Investigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach

In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...

متن کامل

Synthesizing and Characterizing Functionalized Short Multiwall Carbon Nanotubes with Folate, Magnetite and Polyethylene Glycol as Multitargeted Nanocarrier of Anti-cancer Drugs

Multifunctional nanomaterials showed graet advantages in drug delivery. Folic acid (FA) binding protein, a glycosyl phosphatidyl inositol anchored cell surface receptor for folate, is overexpressed in several human tumors, whereas it is highly restricted in normal tissues. Therefore, in this study, FA, polyethylene glycol (PEG), and Fe3O4 nanoparticles multifunctionalized short multiwall carbon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012